Mutations in the endodomain of Sindbis virus glycoprotein E2 define sequences critical for virus assembly.
نویسندگان
چکیده
Envelopment of Sindbis virus at the plasma membrane is a multistep process in which an initial step is the association of the E2 protein via a cytoplasmic endodomain with the preassembled nucleocapsid. Sindbis virus is vectored in nature by blood-sucking insects and grows efficiently in a number of avian and mammalian vertebrate hosts. The assembly of Sindbis virus, therefore, must occur in two very different host cell environments. Mammalian cells contain cholesterol which insect membranes lack. This difference in membrane composition may be critical in determining what requirements are placed on the E2 tail for virus assembly. To examine the interaction between the E2 tail and the nucleocapsid in Sindbis virus, we have produced substitutions and deletions in a region of the E2 tail (E2 amino acids 408 to 415) that is initially integrated into the endoplasmic reticulum. This sequence was identified as being critical for nucleocapsid binding in an in vitro peptide protection assay. The effects of these mutations on virus assembly and function were determined in both vertebrate and invertebrate cells. Amino acid substitutions (at positions E2: 408, 410, 411, and 413) reduced infectious virus production in a position-dependent fashion but were not efficient in disrupting assembly in mammalian cells. Deletions in the E2 endodomain (delta406-407, delta409-411, and delta414-417) resulted in the failure to assemble virions in mammalian cells. Electron microscopy of BHK cells transfected with these mutants revealed assembly of nucleocapsids that failed to attach to membranes. However, introduction of these deletion mutants into insect cells resulted in the assembly of virus-like particles but no assayable infectivity. These data help define protein interactions critical for virus assembly and suggest a fundamental difference between Sindbis virus assembly in mammalian and insect cells.
منابع مشابه
Investigation of the Role of the E2 Endodomain in Sindbis Virus Assembly
WEST, JOHN ALLEN. Investigation of the Role of the E2 Endodomain in Sindbis Virus Assembly. (Under the direction of Dr. Dennis T. Brown) Sindbis virus (SV) is the prototype member of the alphavirus genus belonging to the family Togaviridae. SV is a mosquito-borne virus that can be transmitted to both humans and other animals via mosquito bloodmeal. Structurally, SV is composed of three proteins...
متن کاملA single deletion in the membrane-proximal region of the Sindbis virus glycoprotein E2 endodomain blocks virus assembly.
The envelopment of the Sindbis virus nucleocapsid in the modified cell plasma membrane involves a highly specific interaction between the capsid (C) protein and the endodomain of the E2 glycoprotein. We have previously identified a domain of the Sindbis virus C protein involved in binding to the E2 endodomain (H. Lee and D. T. Brown, Virology 202:390-400, 1994). The C-E2 binding domain resides ...
متن کاملInterferon Resistance of Hepatitis C Virus Genotypes 1a/1b: Relationship to Structural E2 Gene Quasispecies Mutations
Hepatitis C virus (HCV) envelope glycoprotein-2 (E2) inhibits the interferon (IFN)–induced, double –stranded RNA activated protein kinase (PKR) via PKR eukaryotic initiation factor-2α phosphorylation homology domain (PePHD). Present study examined the genetic variability of the PePHD in patients receiving interferon therapy. The PePHD region from HCV genotype 1a/1b infected patients receiving I...
متن کاملNucleocapsid-glycoprotein interactions required for assembly of alphaviruses.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis vi...
متن کاملMolecular genetic study of the interaction of Sindbis virus E2 with Ross River virus E1 for virus budding.
Glycoprotein PE2 of Sindbis virus will form a heterodimer with glycoprotein E1 of Ross River virus that is cleaved to an E2/E1 heterodimer and transported to the cell plasma membrane, but this chimeric heterodimer fails to interact with Sindbis virus nucleocapsids, and very little budding to produce mature virus occurs upon infection with chimeric viruses. We have isolated in both Sindbis virus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 80 9 شماره
صفحات -
تاریخ انتشار 2006